

Sol. $V_{\text{sound}} = \sqrt{\frac{Y}{\rho}}$

$$\frac{\Delta V}{V} \times 100 = \frac{1}{2} \left(\frac{\Delta Y}{Y} \times 100 \right) - \frac{1}{2} \left(\frac{\Delta \rho}{\rho} \times 100 \right)$$

$$= \frac{1}{2} \times 1 - \frac{1}{2} \times 0.5$$

$$\frac{\Delta V}{V} \times 100 = \frac{1}{4}$$

$$\Delta V = \frac{1}{4} \times \frac{V}{100}$$

$$\Delta V = 1 \text{ m/s}$$

$$V_{\text{final}} = 400 + 1 = 401 \text{ m/s}$$

35. Identify the correct statements :

- A. Effective capacitance of a series combination of capacitors is always smaller than the smallest capacitance of the capacitor in the combination.
- B. When a dielectric medium is placed between the charged plates of a capacitor, displacement of charges cannot occur due to insulation property of dielectric.
- C. Increasing of area of capacitor plate or decreasing of thickness of dielectric is an alternate method to increase the capacitance.
- D. For a point charge, concentric spherical shells centered at the location of the charge are equipotential surfaces.

Choose the **correct** answer from the options given below.

- (1) A, B and C only
- (2) C and D only
- (3) A, C and D only
- (4) B and D only

Ans. (3)

Sol. For series combination

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$$

$\therefore C_{\text{eq}}$ is less than C_1 & C_2 .

Note : In statement C, capacitor is assumed to be completely filled with dielectric then on decreasing thickness of dielectric capacitance will increase.

36. Number of photons of equal energy emitted per second by a 6 mW laser source operating at 663 nm is _____.
(Given : $h = 6.63 \times 10^{-34}$ J.s and $c = 3 \times 10^8$ m/s)

- (1) 5×10^{16}
- (2) 5×10^{15}
- (3) 10×10^{15}
- (4) 2×10^{16}

Ans. (4)

Sol. $P = \frac{nhC}{\lambda}$

$$6 \times 10^{-3} = \frac{n \times 6.63 \times 10^{-34} \times 3 \times 10^8}{663 \times 10^{-9}}$$

$$n = 2 \times 10^{16} \text{ photons}$$

37. When the position vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ changes sign as $-\vec{r}$, which one of the following vector will not flip under sign change ?

- (1) Linear momentum
- (2) Velocity
- (3) Acceleration
- (4) Angular momentum

Ans. (4)

Sol. $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\vec{v} = \frac{d\vec{r}}{dt} = v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$$

$$\vec{p} = m\vec{v}$$

$$\vec{L} = m(\vec{r} \times \vec{v})$$

$$= (x\hat{i} + y\hat{j} + z\hat{k}) \times m(v_x\hat{i} + v_y\hat{j} + v_z\hat{k})$$

When sign of \vec{r} changes, \vec{L} remains same.

38. Which one of the following is **not** a measurable quantity ?

- (1) Voltage difference
- (2) Resistance
- (3) Voltage
- (4) Displacement current

Ans. (3)

Sol. Here from voltage, question refers to potential. We can measure potential difference between two points but not potential at any point.

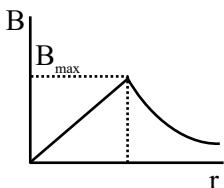
Note : If the potential of reference point is known then we can measure potential as well.

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

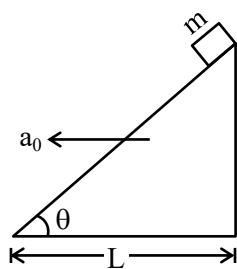
39. A long cylindrical conductor with large cross section carries an electric current distributed uniformly over its cross-section. Magnetic field due to this current is :


- A. maximum at either ends of the conductor and minimum at the midpoint
- B. maximum at the axis of the conductor
- C. minimum at the surface of the conductor
- D. minimum at the axis of the conductor
- E. same at all points in the cross-section of the conductor

Choose the **correct** answer from the options given below :

(1) D Only	(2) A, D Only
(3) B, C Only	(4) E Only

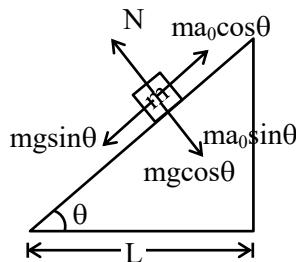
Ans. (1)


Sol. Solid cylinder

B_{\max} at surface

B_{\min} at Axis

40. A small block of mass m slides down from the top of a frictionless inclined surface, while the inclined plane is moving towards left with constant acceleration a_0 . The angle between the inclined plane and ground is θ and its base length is L . Assuming that initially the small block is at the top of the inclined plane, the time it takes to reach the lowest point of the inclined plane is _____.


$$(1) \sqrt{\frac{2L}{g \sin 2\theta - a_0(1 + \cos 2\theta)}}$$

$$(2) \sqrt{\frac{4L}{g \sin 2\theta - a_0(1 + \cos 2\theta)}}$$

$$(3) \sqrt{\frac{4L}{g \cos^2 \theta - a_0 \sin \theta \cos \theta}}$$

$$(4) \sqrt{\frac{2L}{g \sin \theta - a_0 \cos \theta}}$$

Ans. (2)

Sol.

$$mg \sin \theta - ma_0 \cos \theta = ma$$

$$a = g \sin \theta - a_0 \cos \theta$$

Now using,

$$S = ut + \frac{1}{2} a_{\text{down}} t^2$$

$$\frac{L}{\cos \theta} = \frac{1}{2} (g \sin \theta - a_0 \cos \theta) t^2$$

$$t = \sqrt{\frac{2L}{g \sin \theta \cos \theta - a_0 \cos^2 \theta}}$$

$$t = \sqrt{\frac{4L}{g \sin 2\theta - a_0(1 + \cos 2\theta)}}$$

41. Identify the correct statements :

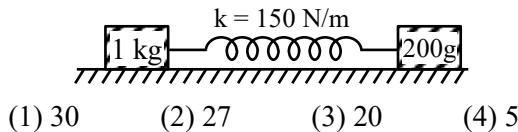
- A. Electrostatic field lines form closed loops.
- B. The electric field lines point radially outward when charge is greater than zero.
- C. The Gauss-Law is valid only for inverse-square force.
- D. The workdone in moving a charged particle in a static electric field around a closed path is zero.
- E. The motion of a particle under Coulomb's force must take place in a plane.

Choose the **correct** answer from the options given below :

(1) A, B, D, E Only	(2) A, B, C, D Only
(3) B, C, D, E Only	(4) A, C, E Only

Ans. (3)

Sol. Theoretical



Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

42. As shown in the figure, a spring is kept in a stretched position with some extension by holding the masses 1 kg and 0.2 kg with a separation more than spring natural length and are released. Assuming the horizontal surface to be frictionless, the angular frequency (in SI unit) of the system is :

Ans. (1)

$$\text{Sol. } \mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{1 \times 0.2}{1.2}$$

$$\mu = \frac{1}{6}$$

$$\omega = \sqrt{\frac{k}{\mu}} = \sqrt{\frac{150}{1/6}} = 30$$

43. For a transparent prism, if the angle of minimum deviation is equal to its refracting angle, the refractive index n of the prism satisfies.

(1) $\sqrt{2} < n < 2\sqrt{2}$ (2) $1 < n < 2$
 (3) $n \geq 2$ (4) $\sqrt{2} < n < 2$

NTA Ans. (4)

Allen Ans. (2)

$$\text{Sol. } \delta_{\min} = 2i - A \Rightarrow i = \delta_{\min} = A$$

$$\text{Also, } \mu = \frac{\sin\left(\frac{\delta_{\min} + A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\Rightarrow \mu = \frac{\sin A}{\sin \frac{A}{2}} = 2 \cos\left(\frac{A}{2}\right)$$

Therefore, $1 < \mu < 2$.

44. The time period of a simple harmonic oscillator is $T = 2\pi\sqrt{\frac{k}{m}}$. The measured value of mass (m) of the object is 10 g with an accuracy of 10 mg, and time for 50 oscillations of the spring is found to be 60 s using a watch of 2 s resolution. Percentage error in determination of spring constant(k) is _____%.

(1) 3.43 (2) 3.35 (3) 7.60 (4) 6.76

Ans. (4)

$$\text{Sol. } \frac{\Delta K}{K} = \frac{2\Delta T}{T} + \frac{\Delta m}{m}$$

$$T = \frac{60}{50} = 1.2 \text{ sec}$$

$$\Delta T = \frac{2}{50}$$

$$\therefore \frac{\Delta K}{K} = \frac{2 \times 2}{50 \times 1.2} + \frac{10 \times 10^{-3}}{10} = 0.0676$$

$$\therefore \% \text{ Error} = 6.76\%$$

45. Match List-I with List-II.

	List-I		List-II
A.	Coefficient of viscosity	I.	$[\text{ML}^{-1}\text{T}^{-2}]$
B.	Surface tension	II.	$[\text{ML}^2\text{T}^{-2}]$
C.	Pressure	III.	$[\text{ML}^0\text{T}^{-2}]$
D.	Surface energy	IV.	$[\text{ML}^{-1}\text{T}^{-1}]$

Choose the correct answer from the options given below :

(1) A-I, B-II, C-IV, D-III

(2) A-IV, B-III, C-I, D-II

(3) A-I, B-III, C-II, D-IV

(4) A-IV, B-I, C-II, D-III

Ans. (2)

$$\text{Sol. (A) } \eta = \frac{\text{Fdr}}{\text{Adv}} = \frac{[\text{MLT}^{-2}][\text{L}]}{[\text{L}^2][\text{LT}^{-1}]} = [\text{ML}^{-1}\text{T}^{-1}]$$

$$\text{(B) } S = \frac{F}{L} = \frac{[\text{MLT}^{-2}]}{[\text{L}]} = [\text{MT}^{-2}]$$

$$\text{(C) } P = \frac{F}{A} = \frac{[\text{MLT}^{-2}]}{[\text{L}^2]} = [\text{ML}^{-1}\text{T}^{-2}]$$

$$\text{(D) } E = S \times A = [\text{MT}^{-2}][\text{L}^2] = [\text{ML}^2\text{T}^{-2}]$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

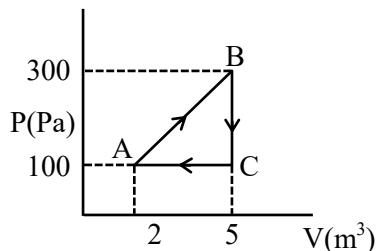
Check Now

SECTION-B

46. Two tuning forks A and B are sounded together giving rise to 8 beats in 2 s. When fork A is loaded with wax, the beat frequency is reduced to 4 beats in 2 s. If the original frequency of tuning fork B is 380 Hz, then the original frequency of tuning fork A is _____ Hz.

Ans. (384)

Sol. $|f_A - f_B| = 4$


$|f_A - 380| = 4$

So, $f_A = 384$ Hz or 376 Hz

on loading with wax f_A decreases

So, $f_A = 384$ Hz

47. A thermodynamic system is taken through the cyclic process ABC as shown in the figure. The total work done by the system during the cycle ABC is _____ J.

Ans. (300)

Sol. Work done = Area bounded by cycle

$= \frac{1}{2} \times 3 \times 200 = 300 \text{ J}$

48. An inductor stores 16 J of magnetic field energy and dissipates 32 W of thermal energy due to its resistance when an a.c. current of 2 A (rms) and frequency 50 Hz flows through it. The ratio of inductive reactance to its resistance is _____. ($\pi = 3.14$)

Ans. (314)

Sol. $\frac{1}{2} L I_{\text{rms}}^2 = 16 \Rightarrow L = 8$

$i^2 R = 32 \Rightarrow R = 8$

$x_L = \omega L \Rightarrow 2 \times 3.14 \times 50 \times 8$

$\Rightarrow 800 \times 3.14$

$R = 8$

$\frac{x_L}{R} = 314$

49. A beam of light consisting of wavelengths 650 nm and 550 nm illuminates the Young's double slits with separation of 2 mm such that the interference fringes are formed on a screen, placed at a distance of 1.2 m from the slits. The least distance of a point from the central maximum, where the bright fringes due to both the wavelengths coincide, is _____ $\times 10^{-5}$ m.

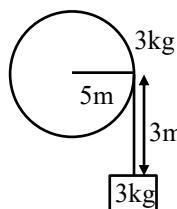
Ans. (429)

Sol. $y = n \frac{\lambda D}{d}$

$y_1 = y_2$

$n_1 \lambda_1 \frac{D}{d} = n_2 \lambda_2 \frac{D}{d}$

$\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{550}{650} = \frac{11}{13}$


$y = 11 \times \frac{\lambda_1 D}{d} = \frac{11 \times 650 \times 10^{-9} \times 1.2}{2 \times 10^{-3}}$

$y = 429 \times 10^{-5}$

50. A fly wheel having mass 3 kg and radius 5 m is free to rotate about a horizontal axis. A string having negligible mass is wound around the wheel and the loose end of the string is connected to a 3 kg mass. The mass is kept at rest initially and released. Kinetic energy of the wheel when the mass descends by 3 m is _____ J. ($g = 10 \text{ m/s}^2$)

Ans. (30)

Sol.

$mg \times 3 = \frac{1}{2} \cdot \frac{mR^2}{2} \omega^2 + \frac{1}{2} mv^2 \quad \dots(i)$

$\& v = \omega R \quad \dots(ii)$

From equation (i) & (ii)

$g \times 3 = \frac{3}{4} \cdot v^2$

$\text{K.E. of flywheel} = \frac{1}{2} \times \frac{mR^2}{2} \times \omega^2 = \frac{1}{4} mv^2$

$= \frac{1}{4} \times 3 \times 40 = 30 \text{ Joule}$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

AIR 1
JEE (Adv.) 2025
Rajit Gupta
CLASSROOM

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the Leader Online Course!

Win up to

90% scholarship

via ASAT

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

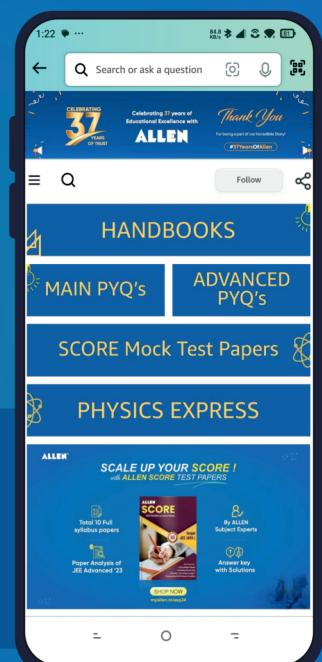
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH